

DUNE/LBNF Beamline Designs and $\nu_{\mu} \rightarrow \nu_{\tau}$ Appearance BNL-SBU meeting Oct 4th, 2016

Mary Bisha BNL

Neutrino Beamline Basics

Reference LBNF beam design

Optimization for ν_{τ} Appearance

Summary

DUNE/LBNF Beamline Designs and $u_{\mu} \rightarrow \nu_{\tau}$ Appearance BNL-SBU meeting Oct 4th, 2016

Mary Bishai BNI

October 4, 2016

Outline

DUNE/LBNF Beamline Designs and $\nu_{\mu} \rightarrow \nu_{\tau}$ Appearance BNL-SBU meeting Oct 4th, 2016

Mary Bisha BNL

Neutrino Beamline Basics

Reference LBNF beam design

Optimization for $u_{ au}$ Appearance

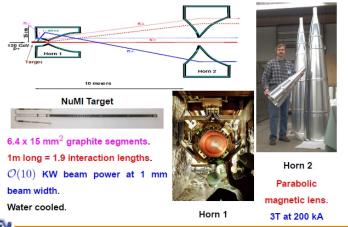
ummar

- 1 Neutrino Beamline Basics
- 2 Reference LBNF beam design
- 3 Optimization for $u_{ au}$ Appearance
- 4 Summary

Example: NuMI Target and Horns

DUNE/LBNF Beamline Designs and $\nu\mu \to \nu\tau$ Appearance BNL-SBU meeting Oct 4th, 2016

Mary Bisha BNL


Neutrino Beamline Basics

Reference LBNF beam design

Optimization for ν_{τ} Appearance

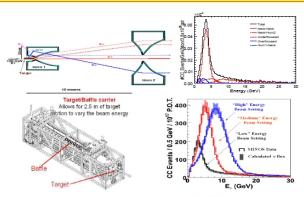
Summary

Target Region Components

Example: NuMI Target and Horns

DUNE/LBNF Beamline Designs and $\nu\mu \to \nu\tau$ Appearance BNL-SBU meeting Oct 4th, 2016

Mary Bisha BNI


Neutrino Beamline Basics

Reference LBNF beam design

Optimization for ν_{τ} Appearance

Summary

NuMI Beam Spectrum

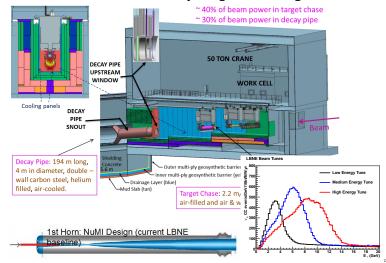
Move target w.r.t to Horn 1: -10cm (LE), -100cm (ME), -250cm (HE)

Beam is 92% u_{μ} , 6.5% $\bar{
u}_{\mu}$, 1.5% $u_{e} + \bar{
u}_{e}$

The LBNF Beamline CDR Design

DUNE/LBNF Beamline Designs and $\nu\mu \rightarrow \nu\tau$ Appearance BNL-SBU meeting Oct 4th, 2016

Mary Bisha BNL


Neutrino Beamline Basics

Reference LBNF beam design

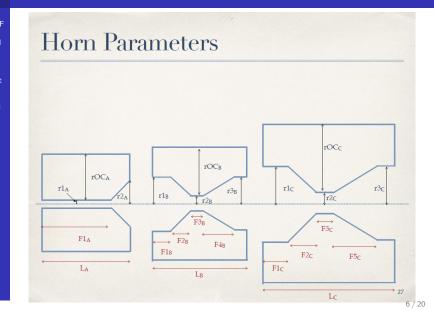
Optimization for $\nu_{ au}$ Appearance

Summary

Advanced conceptual design with upgraded NuMI-style focusing. Horn location fixed but *tunable* by using movable target:

Laura Fields

DUNE/LBNF Beamline Designs and $\nu\mu \to \nu\tau$ Appearance BNL-SBU meeting Oct 4th, 2016


Mary Bisha

Neutrino Beamline Basics

Reference LBNF beam design

Optimization for $u_{ au}$ Appearance

Summar

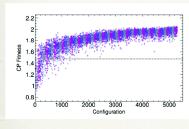
Laura Fields

DUNE/LBNF Beamline Designs and $\nu_{\mu} \rightarrow \nu_{\tau}$ Appearance BNL-SBU meeting Oct 4th, 2016

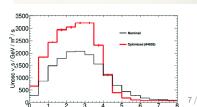
Mary Bisha BNL

Neutrino Beamline Basics

Reference LBNF beam design


Optimization for $u_{ au}$ Appearance

ummary



Optimization w/ Spherical Target

Current status of optimization:

Best Fitness is 2.05 (Reference beam is 1.47) We wanted to include this optimization in the BOTF Interim Report (first draft finished and will be available soon), so I took a snapshot at a slightly earlier point in the optimization (seen here, and discussed more on following pages)

Laura Fields

DUNE/LBNF Beamline Designs and $\nu_{\mu} \rightarrow \nu_{\tau}$ Appearance BNL-SBU meeting Oct 4th, 2016

Mary Bisha BNL

Neutrino Beamline Basics

Reference LBNF beam design

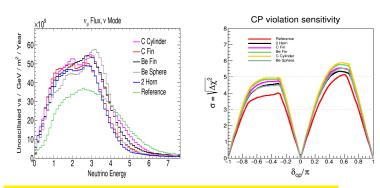
Optimization for ν_{τ} Appearance

Summary

Parameter	Lower Limit	Upper Limit	Unit				
Horn A: L	1000	4500	mm	3717			
Hom A: Fla	1	99	%	51			
Hom A: rla	20	50	mm	33	A		—
Hom A: r2A	20	200	mm	147	VV		
Hom ArOCA	200	650	mm	630			
Hom B: LB	2000	4500	mm	2551			
Horn B: F1 _B	0	100	%	37			
Horn B: F2 _B	0	100	%	12			4
Horn B: F3 _B	0	100	%	2			
Horn B: F4n	0	100	0%	16			
Hom B: R1B	50	200	mm	186			
Horn B: R2 _R	20	50	mm	47	8		
Hom B: R3 _B	50	200	mm	179	v		
Horn B: ROCB	200	650	mm	633	_		
HornB: Z position	2000	17000	mm	5453			
Horn C: Lc	2000	4500	mm	2694		A	A
Hom C: Flc	0	100	%	30			
Hom C: F2c	0	100	%	21			
Hom C: F3c	0	100	%	2			
Hom C: F4c	0	100	%	9			
Hom C: R1c	50	550	mm	388		V	V
Hom C: R2 _C	20	50	mm	26		-	
Hom C: R3c	50	550	mm	306			
Hom C: ROCc	550	650	mm	620			_
Horn C: Z Position	4000	19000	mm	17836		A	
Target Length	0.5	2.0	m	1.98			
Beam spot size	1.6	2.5	mm	2.1			
Target Radius	9	15	mm	7.8			
Proton Energy	60	120	GeV	108			
Hom Current	150	300	kA	270		V	v

Laura Fields

DUNE/LBNF Beamline Designs and $\nu_{\mu} \rightarrow \nu_{\tau}$ Appearance BNL-SBU meeting Oct 4th, 2016


Mary Bisha BNL

Neutrino Beamline Basics

Reference LBNF beam design

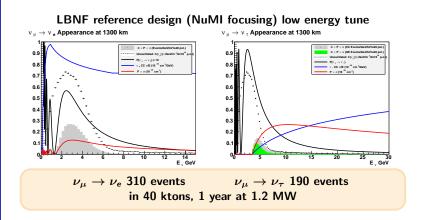
Optimizatio for ν_{τ} Appearance

Summar

BOTF result: Significant gain in flux < 3 GeV = CPV gain

$u_{\mu} ightarrow u_{ au}$ Appearance Fundamentals

DUNE/LBNF Beamline Designs and $\nu_{\mu} \rightarrow \nu_{\tau}$ Appearance BNL-SBU meeting Oct 4th, 2016


Mary Bisha BNL

Neutrino Beamline Basics

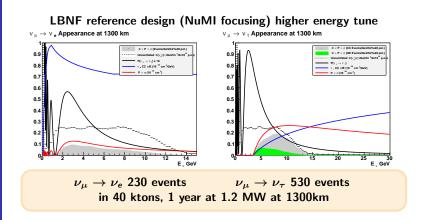
Reference LBNF bean design

Optimization for u_{τ} Appearance

ummarv

$u_{\mu} ightarrow u_{ au}$ Appearance Fundamentals

DUNE/LBNF Beamline Designs and $\nu_{\mu} \rightarrow \nu_{\tau}$ Appearance BNL-SBU meeting Oct 4th, 2016


Mary Bisha BNL

Neutrino Beamline Basics

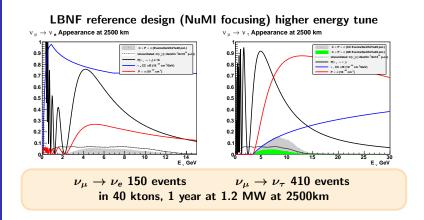
Reference LBNF bean design

Optimization for $u_{ au}$ Appearance

ummar

$u_{\mu} ightarrow u_{ au}$ Appearance Fundamentals

DUNE/LBNF Beamline Designs and $\nu_{\mu} \rightarrow \nu_{\tau}$ Appearance BNL-SBU meeting Oct 4th, 2016


Mary Bisha BNL

Neutrino Beamline Basics

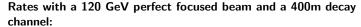
Reference LBNF bean design

Optimization for $u_{ au}$ Appearance

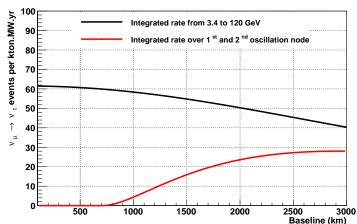
ummarv

Are we at the right baseline?

DUNE/LBNF Beamline Designs and $\nu_{\mu} \rightarrow \nu_{\tau}$ Appearance BNL-SBU meeting Oct 4th, 2016


Mary Bisha BNL

Neutrino Beamline Basics


Reference LBNF bear design

Optimization for $u_{ au}$ Appearance

ummar

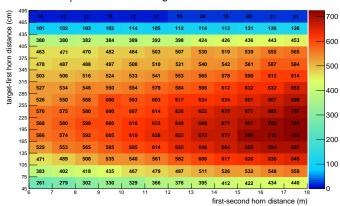
Integrated rate from 3.4 to 120 GeV

Depends on how you focus !!. Baseline is not a fundamental limitation.

DUNE/LBNF Beamline Designs and $\nu_{\mu} \rightarrow \nu_{\tau}$ Appearance BNL-SBU meeting Oct 4th, 2016

Mary Bisha BNL

Neutrino Beamline Basics


Reference LBNF bean design

Optimization for u_{τ} Appearance

Summar

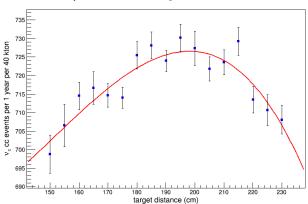
ν_τ cc events over target and horns distance

Need to push the horns as further away as possible

DUNE/LBNF Beamline Designs and $\nu_{\mu} \rightarrow \nu_{\tau}$ Appearance BNL-SBU meeting Oct 4th, 2016

Mary Bisha BNL

Neutrino Beamline Basics


Reference LBNF beam design

Optimization for $u_{ au}$ Appearance

Summar

From Letizia Parato (G4LBNF, detailed geometry, GENIE cross-sections):

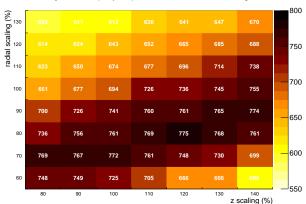
 v_{τ} cc events over target distance - zoom

A target \sim 2 m away from NuMI Horn 1 is optimal

DUNE/LBNF Beamline Designs and $\nu_{\mu} \rightarrow \nu_{\tau}$ Appearance BNL-SBU meeting Oct 4th, 2016

Mary Bishai BNL

Neutrino Beamline Basics


Reference LBNF bear design

Optimization for u_{τ} Appearance

Summar

From Letizia Parato (G4LBNF, detailed geometry, GENIE cross-sections):

 v_{τ} cc events per year per 40 kton over horn 2 scaling

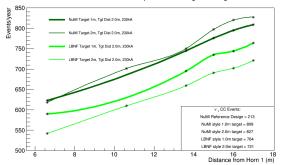
Further optimization of horns increases yield.

DUNE/LBNF Beamline Designs and $\nu_{\mu} \rightarrow \nu_{\tau}$ Appearance BNL-SBU meeting Oct 4th, 2016

Mary Bisha BNL

Neutrino Beamline Basics

Reference LBNF beam design


Optimization for ν_{τ} Appearance

Summar

From Michael Dolce (G4LBNE v2, simplified geometry, GLoBeS cross-sections):

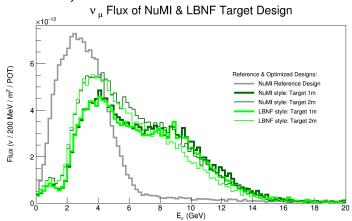
NuMI target: 120 GeV $\sigma_p=1.5$ mm; graphite box 1.754 g/cm³; 6.4mm W x 20mm H x 0.9538m or 2.3719m L LBNF target: 120 GeV $\sigma_p=1.7$ mm; graphite box 1.754 g/cm³; 10mm W x 20.73mm H x 0.9538m or 2.3719m L

Events of the Four Optimized Target Designs

Need a target that produces more pions from primary p^+ interactions.

DUNE/LBNF Beamline Designs and $\nu_{\mu} \rightarrow \nu_{\tau}$ Appearance BNL-SBU meeting Oct 4th, 2016

Mary Bisha BNL


Neutrino Beamline Basics

Reference LBNF bean design

Optimization for u_{τ} Appearance

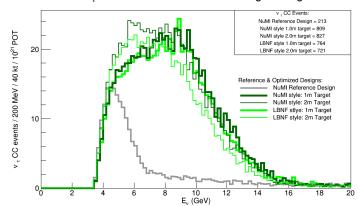
Summar

From Michael Dolce (G4LBNE v2, simplified geometry, GLobeS cross-sections):

DUNE/LBNF Beamline Designs and $\nu_{\mu} \rightarrow \nu_{\tau}$ Appearance BNL-SBU meeting Oct 4th, 2016

Mary Bisha BNL

Neutrino Beamline Basics


Reference LBNF beam design

Optimization for u_{τ} Appearance

Summar

From Michael Dolce (G4LBNE v2, simplified geometry, GLoBeS cross-sections):

v , CC events of NuMI & LBNF Target Design

Summary and Conclusions

DUNE/LBNF Beamline Designs and $\nu_{\mu} \rightarrow \nu_{\tau}$ Appearance BNL-SBU meeting Oct 4th, 2016

Mary Bisha BNL

Neutrino Beamline Basics

Reference LBNF bean design

Optimization for u_{τ} Appearance

Summary

- By varying the tune of the reference LBNF 2-horn design (NuMI-like), we can increase the number of ν_{τ} appearance events from 130 CC events with the optimized 3-horn design (\sim 200 with the reference LBNF design) to \sim 720 CC events per 40 kton-year !
- \blacksquare 2 completely independent studies by Letizia Parato and Michael Dolce indicate that for the reference LBNF NuMI-like focusing system, the optimal tune for ν_{τ} apperance is with the horns the maximum distance apart allowed by the expanded chase \sim 17m, 230kA and a target 2m from Horn 1.
- Preliminary studies indicate target optimization is needed to increase the number of pions from primary proton interactions.
 Challenge at 1.2MW or higher.

Further Studies - Opportunities for Collabortion

DUNE/LBNF Beamline Designs and $\nu_{\mu} \rightarrow \nu_{\tau}$ Appearance BNL-SBU meeting Oct 4th, 2016

Mary Bisha BNL

Neutrino Beamline Basics

Reference LBNF beam design

Optimization for ν_{τ} Appearance

Summary

- Using GLoBeS and DUNE FastMC (parameteric simulation) develop a full sensitivity analysis to ν_{τ} appearance in DUNE/LBNF taking into account smearing and backgrounds
- \blacksquare Apply machine learning techniques to the double parabolic horn designs to optimize for ν_{τ} appearance. This requires development of a metric based on sensitivity studies.
- \blacksquare ProtoDUNE data analysis to improve input to FastMC ν_{τ} selection based on fully reconstructed hadron and electron shower resolutions.
- \blacksquare Co-ordinate with the BSM and Long-Baseline PWG on the final design high energy focusing system that expands the physics reach beyond ν_{τ} appearance as well.